ASYMMETRIC DIELS-ALDER CYCLOADDITIONS USING

CHIRAL ALKYL VINYL ETHERS AND A DIENYL SULFONE

Gary H. Posner* and David G. Wettlaufer

Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218

<u>Summary</u>: Chiral alkyl vinyl ethers $\underline{2b-2j}$ underwent mild, inverse electron demand, Diels-Alder cycloadditions with 3-arenesulfonyl-2-pyrone <u>1</u> to form bridged bicyclic lactone adducts $\underline{3b-3j}$ in excellent yields and with diastereoselectivities of up to 90%.

Asymmetric Diels-Alder cycloadditions are becoming increasingly useful in controlling absolute stereochemistry during formation of several carbon-carbon bonds in one reaction; by far most examples involve electrophilic, chiral dienophiles.¹ We have reported recently the first example of a highly diastereoselective Diels-Alder cycloaddition using an electrophilic, chiral dienyl sulfoxide as an enophile.² We have found now that electrophilic dienyl sulfone <u>1</u> undergoes some very highly diastereoselective, mild 2+4-cycloadditions with several alkyl vinyl ethers as nucleophilic, chiral dienophiles (eq. 1).³

	<u>R</u>	2 Yield	% d.e.		<u></u>	% Yield	% d.e.
a	Ethy1	95		f	l-Naph(Me)CH	95	64
b	2-Octyl	>90	~0	g	Ph(Me)CH	75	66
<u>c</u>	endo-2-Bornyl	> 9 0	~5	<u>h</u>	2,4,6-Me ₃ Ph(Me)CH	>90	80
<u>d</u>	8-Phenylmenthyl	>9 0	~5	i	Ph(i-Pr)CH	94	84
e	Menthy1	89	54	i	Ph(t-Bu)CH	9 0	9 0

3-p-Toluenesulfony1-2-pyrone (1), prepared from 3-bromo-2-pyrone,⁴ reacted with several equivalents of various alkyl vinyl ethers <u>2</u> in methylene chloride to produce Diels-Alder adducts <u>3</u> in excellent chemical yields. No Lewis acid was needed, and no loss of carbon dioxide occurred from bridged bicyclic lactone adducts <u>3</u>.⁵ The structures of bicyclic lactones <u>3</u> were confirmed by IR (non-conjugated lactone) and by ¹H NMR (only two olefinic hydrogen atoms). That the ethoxy group in bicyclic adduct <u>3a</u> is oriented toward the 2-carbon olefinic bridge is consistent with prediction based on molecular models and was determined by NMR in comparison to a structurally similar system;⁶ the methyl triplet for the ethoxy group of adduct <u>3a</u> appeared at δ 1.20, whereas that for the corresponding minor isomeric adduct having the ethoxy group oriented toward the 2-carbon lactone bridge (i.e., epi-<u>3a</u>) appeared at δ 0.86. The ratio of adducts <u>3a</u>:epi-<u>3a</u> was >20:1.

Alkyl vinyl ethers <u>2b-2j</u>, prepared from <u>n</u>-butyl vinyl ether and various chiral alcohols <u>via</u> mercury-promoted <u>trans</u>-etherification,⁷ also underwent high-yield and mild inverse electron demand 2+4-cycloadditions (eq. 1). The diastereomeric purities of <u>crude</u> adducts <u>3b-3j</u> were determined easily and accurately by 400 MHz ¹NMR analysis of the toluene doublets. For example, isopropyl phenyl carbinyl adduct <u>3i</u> showed two tolyl doublets (J = 8.17 Hz) with one centered at δ 8.02 and the other centered at δ 7.92 in a diastereomeric ratio of 92:8 (84% diastereomeric excess). The pure major diastereomer was isolated after chromatography in 86% yield!⁸

Although the <u>t</u>-butyl phenyl carbinyl adduct <u>3j</u> was formed even more diastereoselectively (90% d.e.), the commercial availability of enantiomerically pure isopropyl phenyl carbinol in both (<u>R</u>)- and (<u>S</u>)-antipodes⁹ and the ease of purification of diastereomeric adducts <u>31</u> prompted us to focus on adduct <u>31</u> (rather than on <u>3j</u>). At this time, we can offer no unambiguous explanation for why some normally effective chiral auxiliaries (e.g., the 8-phenylmenthyl system)¹⁰ produced such low diastereoselectivity in eq. 1. The variety of useful functional groups in adduct <u>31</u> suggests that it will be an extremely valuable and versatile intermediate for preparing various richly functionalized cyclohexyl ring systems. For example, hydroxylation of the double bond in adduct <u>31</u> followed by nucleophilic opening of the lactone ring should produce a ring-tetraoxygenated cyclohexanecarboxylic acid system.

We have converted enantiomerically pure $(\underline{S})-(-)$ -isopropyl phenyl carbinol into the corresponding $(\underline{S})-(-)$ -vinyl ether $[(\underline{S})-(-)-2i$, Scheme I]. To check that no racemization was oc-

curring in this transetherification reaction, both the remaining alcohol and the product vinyl ether, after methanolysis, were converted into the same Mosher ester¹¹ derivative <u>4</u> (Scheme I). Analysis by ¹H and by ¹⁹F NMR revealed a diastereomeric purity of >98% for the Mosher ester <u>4</u> derived from the remaining alcohol as well as from the product vinyl ether.

4, >98% d.e.

Enantiomerically pure vinyl ether $(\underline{S})-(-)-\underline{2i}$ was converted on gram-scale into Diels-Alder adduct $(-)-\underline{3i}$ which was isolated as a pure diastereomer in 84% yield! We are now using this chiron¹² in a planned total synthesis of some enantiomerically pure members of the shikimic acid family.¹³

Acknowledgement

We thank the National Science Foundation for generous financial support (CHE-83-12161). The NSF (PCM-83-03176) and the NIH (1 S10 RR01934) contributed to the purchase of a departmental 400 MHz NMR spectrometer.

References

- 1. For an excellent and up-to-date review, see Oppolzer, W., <u>Angew. Chem. Int. Ed. Engl.</u>, **1984**, <u>23</u>, 876.
- 2. Posner, G. H. and Harrison W., J. Chem. Soc. Chem. Commun., in press.
- 3. (a) For recent use of another sulfonyl diene as an electrophilic enophile, see Masuyama, Y., Sata, H. and Kurusu, Y., <u>Tetrahedron Lett.</u>, 1985, 26; 67;
 (b) cf. Taylor, E. C. and Macor, J. E., Ibid., 1985, 26, 2415.
- (a) Posner, G. H. and Harrison, W., J Organomet Chem., 1985 285, C27;
 (b) Posner, G. H., Harrison, W. and Wettlaufer, D. G., J. Org. Chem., in press.
- 5. <u>cf</u>. Boger, D. L., and Mullican, M. D., <u>J. Org. Chem.</u>, **1984**, <u>49</u>, 4033, and references therein for inverse electron demand Diels-Alder reactions.
- 6. Behringer, H. and Heckmaier, P., Chem. Ber., 1969, 102, 2835.
- 7. Watanabe, W. H. and Conlon, L. E., J. Am. Chem. Soc., 1957, 79, 2828.
- 8. A typical experimental procedure is as follows: To an argon-flushed, 10 ml, roundbottomed flask fitted with a magnetic stirrer, bar and a teflon stopper was added 3-ptoluenesulfonyl-2-pyrone (0.50 g, 2.0 mmol), 4 2-methyl-1-phenyl-1-propyl vinyl ether (0.90 g, 5.1 mmol), and dichloromethane (2.0 ml). The resulting yellow-brown suspension was stirred at room temperature, becoming homogenous after 8-9 hours. Stirring was continued until complete reaction was observed by TLC (66% ether/hexane, 2-3 days). Concentration afforded the crude Diels-Alder adduct which was analyzd by 400 MHz ¹H NMR and found to be a 49:1 ratio of <u>31:epi-31</u> with <u>31</u> being a 92:8 mixture of diastereomers. Purification was by short path column chromotography (silica gel, 5% EtOAc/10% CH₂Cl₂/85% hexane) and then by PTLC (silica gel, 5% EtOAc/10% CH₂Cl₂/85% hexane, 2 elutions). The major diastereomer was recovered as a white solid (0.737 g, 1.73 mmol, 86.5%, R_f = 0.33 in 66% ether/hexane): mp 147-149°C; ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, J=8.17 Hz, 2H), 7.43-7.26 (m, 7H), 6.97 (br d, J=7.9 Hz, 1H), 6.69 (dd, J=7.6 Hz, 1H), 2.42 (s, 3H), 2.26-2.17 (m, 1H), 4.65 (br d, J=7.6 Hz, 1H), 4.60 (d, J=7.6 Hz, 1H), 2.42 (s, 3H), 2.26-2.17 (m, 1H), 2.13-2.00 (m, 1H), $_{1}$ -52 (br d, J=13.7 Hz, 1H), 1.09 (d, J=6.8 Hz, 3H), 0.68 (d, J=6.8 Hz, 3H); IR (CHCl₃) cm⁻¹: 1758, 1596, 1363, 1325, 1157, 1088. Anal. calcd. for C₂AH₂Go₅S: C, 67.57; H, 6.16; S, 7.52. Found: C, 67.45; H, 6.19; S, 7.43. The remaining product was recovered as a foam and found to be a 5:16 mixture of epi-<u>31:31</u> with <u>31</u> being a 1:16 mixture of diastereomers (0.067 g, 0.16 mmol, 8%, R_f=0.25 in 66% ether/hexane). This mixture was characterized by 400 ^H NMR (CDCl₃). The relevant signal for epi-<u>31</u> is at δ 8.12 (d, J=8.6 Hz) and for the minor diastereomer of <u>31</u> ia at δ 7.92 (d, J=8.2 Hz). In a similar fashion, (S)-(-)-alkyl vinyl ether <u>21</u> [bp₃₉ <u>110-112°</u>C [α]²^D = -49° (c 1.6, CHCl₃)] led to lactome adduct <u>31</u>, [α]²D =
- 9. Aldrich Chemical Company.
- 10. (a) We thank Professor Ensley (Tulane University) for a generous gift of 8phenylmenthol; <u>cf</u>. Ensley, H. E. and Brausch, J. F., <u>Org. Syntheses</u>, procedure submitted;
 - (b) Corey, E. J., Ensley, H. E. and Suggs, J. W., J. Org. Chem., 1976, 41, 380;
 - (c) Whitesell, J. K., Accts. Chem. Res., 1985, 18, 280.
- 11. Dale, J. A. Dull, D. L. and Mosher, H. S., J. Org. Chem., 1969, 34, 2543.
- 12. Hanessian, S. "Total Synthesis of Natural Products: The Chiron Approach", Pergamon Press, New York, N.Y. 1984.
- 13. Haslam, E., "The Shikimate Pathway", John Wiley and Sons, New York, N.Y., 1974.

(Received in USA 28 October 1985)